THE THERMAL CONDUCTIVITY OF GRANULAR AND
WEAKLY SINTERED MATERIALS
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We propose a new stable model of a granular or sintered material in a form with a second-
order structure, with mutually penetrating components. We derive the functional relation-
ships for the calculation of the coefficients of generalized conductivity® for the granular and
sintered materials.

1. Discussion of the Need for the Construction of a

New Model of Granular Systems

Numerous books, surveyed in [1-6], have been devoted to a study of the process of heat transfer in
granular systems. The adequacy of the physical model and of the real system are usually evaluated on the
basis of the extent to which the calculation results coincide with the experimental data. However, agree -
ment with experiment, despite its value, is by no means a definitive criterion for the quality of a given
model or calculation scheme, since the comparison is not always sufficiently extensive to cover the entire
possible range of variation in the significant parameters. The testing of any given formula by other re-
searchers with different materials in another range of variation for the determining parameters, on
occasion, reveals substantial differences between the calculation results and those of the experiment.

Satisfactory agreement in limited comparison with experiment may be a random occurrence, or it
may be explained by the mutually offsetting effect of individual defects within the model, or it may be a
consequence of an inaccuracy in the mathematical conversions. In addition to comparing the calculation
results with the experiment —an absolutely mandatory requirement —we should devote some attention to
the internal adequacy of the model. With regard to granular systems, the internal adequacy of the model ap-
parently should be understood to refer to the extent to which the model corresponds to the real structure
of the system, its physical stability, and its isotropicity.

One method of determining the internal adequacy of a model is the testing of the working formula
derived from that model on the limit transitions. In the limiting cases, with a porosity of mp = 0.26 (models
with a tetrahedral packing) and mp = 0.47 (models with cubic packing), many of the working formulas lead
to physically absurd results. Thus, for example, the functional relationships for the calculations of thermal
conduectivity [7, 8] for my, = 0.26 yield a value of A = « for the effective thermal conductivity; in {4, 7, 9-12],
as mg — 1, we are told that A < 0 or A = 0, or we are given a positive but physically invalid result. For
the case in which Ap/ks =1 we should expect A = Ag =Aj. However, the working formulas from {4, 7,

9, 11-13] do not yield the anticipated result. All of the formulas derived from models of noncontacting in-
clusions of any shape, distributed through the matrix, with Ap = Oyield A = 0, which contradicts the experi-
mental data. Let us draw attention to another two important factors — the isotropicity of the model and its
physical stability, factors virtually not touched upon in the above-cited surveys {1-6]. The random nature
of the structure in real granular systems determines the isotropicity of their properties. This fact must
be borne in mind in devising ordered models of a granular system, in choosing the form of its symmetry,
and in selecting the "elementary cell," for which we undertake the mathematical description of the process
within the volume of that cell. Isotropicity for the properties of the granular system can be achieved in

*The coefficient of generalized conductivity will subsequently be understood to refer to any of the coeffi~
cients of thermal or electrical conductivity, to the permittivity or to magnetic permeability.
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Fig. 1. Diagram relating to the new model of the granular
system: a) schematic representation of the structure of real
granular material; b) stable model with spherical grains

in the form of a complex second-order structure.

two ways: a) by the construction of an isotropic elementary cell; b) by the use of an anisotropic elementary
cell, with subsequent analytical averaging of its properties in all directions.

2. The Stability of Models of Granular Systems

The most frequently used models of granular systems in the form of spherical particles with any
ordered packing are strictly stable only for a single specific value of the component volume concentra-
tion (for example, my = 0.26 for tetrahedral packing, myp = 0.47 for cubic packing, ete.). It is impossible to
substantiate the stability of models of granular systems in the form of noncontacting inclusions of any shape
(the solid component), distributed within the gas component [3, 7, 8, 10-13]. These models are suitable,
more likely, for the description of aerosol structure (smokes and fogs).

We can cite the following reasons which, in our opinion, partially explain the stability of real mono-
disperse granular systems, when their porosity differs from the theoretical values: the combined packing
(individual segments of the system are formed by various types of packing); deviations in the shape of real
particles from that of the simplest geometric figures and the existence of microirregularities; the existence
of a more complex system structure formed by segments with a dense grain packing and a space lattice
of larger voids, penetrating the entire volume of the granular system.

It is natural to assume that in real granular materials all of the above -enumerated three factors
apply.

1) The presence of combined packing (a combination of tetrahedral and cubie packing, or others)
provides a substantiation of the stability of a model with spherical grains only for a narrow range of varia-
tion in porosity from mp = 0.26 to mp =~ 0.47. With a porosity of mp > 0.47 no manner of ordered packing
for the spherical particles in contact results in a physically stable model and the separate grains seemingly
float in space.

2) Measurements of porosity for real granular materials with grains of various configurations
(spheres, cylinders, cubes, ellipsoids of revolution, etc.) demonstrated that the porosity of such systems
depends weakly on particle shape, and the microirregularities have virtually no effect on the porosity of
the granular system [1, 7]. Consequently, deviations in grain shape from the spherical and the existence of
microirregularities cannot serve as a basis for the stability of granular systems in the case of high porosity.

3) Direct observation of various granular systems by means of a binocular microscope makes pos-
sible schematic two-dimensional representation of structure (see Fig. 1a). It can be seen that the granular
system is formed by a "skeleton," consisting of a disordered but relatively dense grain packing (a first-
order structure) and larger voids, penetrating the skeleton and forming — together with the skeleton —a
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Fig. 2. Investigation of heat transfer in the elementary cell:
a) selected form of the elementary cell in tetrahedral pack-
ing; b) the one-third of the elementary cell under considera-
tion; ¢) circuit connecting the thermal resistances of the in-
dividual parts of the cell.

structure with mutually penetrating components {a second-order structure). Such a structure can actuaily
exhibit stability over the entire range of variation in porosity.

The first stable models suitable for description of granular-system structures were proposed in {14~
16] and represented modifications of structure models with mutually penetrating components. The short-
coming of these models is the rough schematization of the clearance geometry between the grains and the
fact that the grain shape is a function of porosity, which resulted in substantial distortion of grain shape for
high porosities mp > 0.7).

The effort to eliminate the drawbacks in the models [14-16] lead to the development of a new stable .
model for granular and sintered materials, based on the important assumption that the effective thermal
conductivities of systems with disorderedand ordered skeletons are equal to each other, provided the com-
ponent volume concentrations and their coefficients of thermal conductivity are, respectively, equal. The
model of the granular system in the form of a second-order structure is stable over the entire range of
variation for the porosity of real granular systems and because of cubic symmetry it is isotropic.

A general method was proposed in [14] to determine the effective thermal conductivity of higher-
order structures by successively reducing these to first-order structures. We will apply this method to
the problem under consideration. In the first stage, we determine the thermal conductivity Agy of the skele-
ton from the known values for the thermal conductivity Aj of the components, the porosity mgy, and the
nature of its structure, i.e.,

Agk=f1 (%s, Ay, M) (1)

The form of the functional relationship (1) is governed by the nature of the packing and grain shape.
If the skeleton thermal conductivity for the first-order structure is determined (we will show how this is to
be done later on), the effective thermal conductivity for the entire granular system (the second-order struc-
ture) is calculated from the formulas for structures with mutually penetrating components [14], and namely

- ., 2vy0, (1 —¢5) A
A=A 2 L — )2 22l T e = P,
sk [ 62 v2(1 CZ) VoCy (1 Cz) :l y VY }”sk (2)

Here ¢; = A,/ L, is the geometric parameter of the model, associated with the volume concentration mp,
of the gas component in the second-order structure by the equation

My = 263 — 33+ 1, (3)
whose solution is given in [17, 18].

The problem can be regarded as solved, if we know the form of the functional relationship (1) and the
method of determining the porosity (mgy) of the first-order structure and (mpz) of the second-order struc-
ture. If we denote the overall porosity mpy, it is not difficult to establish the relationship between mp, mgy,
and m ie.

p27 3

Mo = (mgq—my) (1 — mg ) (4)
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Fig. 3. Schematic representation of streamline distribution for flows Q; and Q,: a) in the longitudinal
cross section of the elementary cell, through the point of contact; b) in the thermal model.

Fig. 4. Diagram for the calculation of the thermal resistance R; (schematic representation of space be-
tween grains).

Testing the functional relationship (2) for passage to the limit leads to obvious results: 1) my =1, My, = 1,
A = Aps 2) mp = Mg, Mpy = 0,2 = Agls ) Vy=1,A=Agk = Ap- Let us now turn to the determination of the

coefficient of thermal conductivity for the skeleton.

3. Thermal Conductivity of the Skeleton

Let us assume that the skeleton is formed of grains of the simplest spherical shape, with tetrahedral
packing. We will examine the transfer of heat in the skeleton, but not through the entire volume of the
skeleton; rather, we will consider the "elementary cell," whose shape in the tetrahedral packing depends on
the chosen direction of the heat flow. In the tetrahedral packing, because of isotropicity, all directions are
equivalent and we will therefore examine the transfer of heat in the direction in which the elementary cell
has the form of a proper hexagonal prism (Fig. 2a). The bases of the prism in this case are isothermal,
while the side facets are adiabatic planes. The axial symmetry of the elementary cell enables us to study
the transfer of heat in one third of the cell (Fig. 2b). The circuit showing the connection of the heat resis-
tances for the individual segments of the elementary cell is shown in Fig. 2c and corresponds to the fol-
lowing proposed physical pattern of the heat-flow distribution. The transfer of heat between the isothermal
bases is accomplished by means of three flows. The flow Qq, passing exclusively through the solid com-
ponent (see Fig. 3a) enters into one sixth of the spherical grain through the area Sin = 1/ 37rrs h» Passing
through the constriction formed by the point of contact with the area Sg = ra?, and then passmg through the
second one sixth portion of the sphere, it reaches the bases. The flow Q, enters the elementary cell through
the same area S;; and, passing successively through the solid particle, the annular gas space between the
graing, and the other particle, it reaches the bases of the prism. The flow Q3 passes through the elementary
cell, following the open pores . The thermal resistances of the individual segments of the model are found
in approximate terms. For this we replace the individual segments of the elementary cell by bodies of
simpler shape, and namely: we replace the spherical part with cylinders having a height of 0.81 rgph With the
same values for the areas of the inlet and points of contact, and the open pores on the remaining area are
shown in the form of a flat wall (Fig. 3b). Let us examine the means of determining individual thermal

resistances for such a model.

The expression for the thermal resistance of the cylinder with an axial point of entry is taken from
[14],i.e.,

0,817, 0.81 a
YO sph_ Y0 _ .
R = qub Ry = A }"nyrbph Y rsph,
I i) rci
o=—0| /3y, T =1 162234, 3y T ot ﬂ) I an XX na V'3 l)
(’ v hec ™ 2 rmvyhc : hec hec Vyh
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—K, (nn T g, ( ey 3y Ey_l)] Cn=2m+1, m=0, 1, 92,.. (6)
hec / hec
The function ¢ is related to the determining parameters y and reyl /hge in graphical form in [14]. For

small points of contact (y =5 -1072%) the function & can be approximated by the relationship

@ (1 3y, E’iﬁ) =~ 1.2y. (M
cC

The thermal resistance R, of the cylinder to the flow Q, entering the gas space through the annular spot is

determined approximately in analogy with (5) in the form R, = Ryp. The function ¢@(V3y, rcyl/ hee) charac-

terizes the change in the resistance R,y as a result of current leakage through the entire cross section. For

this we present the heat flow q flowing through a uniform cylinder of length L between the isotherms T, and

T, in the following form (the superposition principle):

g=q,+ g =0(T,—T)), (8)
and here q; = o(Ty —T;) is the flow of heat passing through the cylinder with the axial point of entry and

adiabatic walls; qy = ¢4(T'y — T}) is the flow of heat passing through the cylinder with the annular point of
entry. Since the temperature difference (T, —T,) is identical, it follows from (8) that

¢ =0, 0, (9
The conductivity of the individual segments is expressed in the form
o =AaS,L% 0, =4 § LT oy =A§ L7 (10)
Having presented the effective length of the streamlines in the form L, = L& and L, = L¢, with considera-

tion of (8)-(10) it is not difficult to find the relationship between the functions @ and ¢

Seyl- St 1—y? (1' n

PES 50T 1y
cyl
and to obtain the expression for the thermal resistance R,
0,817ph 2,43
_ - g =2 o 12
R,=Ry® e (rc:)y—l— a?) P e 1—35) rspth (12)
The thermal contact resistance is determined from the formula for a flat wall, i.e.,
hm]j I'_l:
Ry= i =——35—» (13)
* 7”5 Smc ;”s Ty 2rsph

The thermal resistance of the space between the grains is made up of the parallel-connected resistance R,
of the spherical portion and the resistance Rg of the flat microclearance of height hy, , in the region of
nominal contact with the area Sy = Sy — S¢

Bane h b

- S hom (B =), =

R = , .
e sph sph

(14)

The nominal contact area Sy = b’ is usually evaluated on the basis of the Hertz formula for elastic
spheres {6, 7]. The actual contact area depends on the magnitude of the external load, the geometry of
the microroughnesses, and the strength characteristics of the solid components. In the case of free flow
S¢/Sn=1 107%-1-107°. The height of the microroughnesses for granular materials with an untreated sur-
face generally is hyp/rgpy =1-1072-1-107* (6, 7].

The thermal resistance Ry of the spherical portion of the space is evaluated in approximate terms,
dividing this space concentrically with annular adiabatic surfaces, as shown in Fig. 4, i.e.,

2 eyl
Ro= L o [ ao,= (Y_M_
9 3 - t NP
% Q A
1 = 1+h—o0815 |
R =5 o 0-815“§ }‘—‘—zz"l_ 1+ ) In *——r———*-:j . 15
3 2n7\prsph[ (1+hn 7y 1—2 (15)
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The thermal resistance R of the open gas pores is given approximately in the form

A 3
Ry==% — — | (16)
’ Ay S — Nron
Having determined the values of the thermal resistances for the separate parts of the elementary
cell, we can derive the expression for the equivalent or effective thermal resistance R of the entire circuit.
The thermal resistance of the elementary cell can be expressed differently, in terms of its geometry and
its effective thermal conductivity, ie.,

(7

Having equated the expressions for the thermal resistances of the elementary cell, calculated in accordance
with the circuit shown in (Fig. 2) and on the basis of (17), let us determine the effective thermal conductivity
of the elementary cell and, consequently, of the entire skeleton. The theoretical formula has the form

Aok 2.2447 9 94 [ h L2439 7 }
Dok 22 L0994 o ZEP 8.9-102w,,
hs 081Dk i v(Z—y) + 2y 1 =35 * "

— = 1 +k—0815 A
=038156—)1—22 1+ ——— o = P
P |4 -i-(+)n1 PR Vy A

and satisfies the passage to the limit.

4. The Thermal Conductivity of the Component

Filling the Pore

If the pores are filled with the gas component, its thermal conductivity is composed of the molecular
and the radiation components and depends on the pore size [17],1ie.,

The molecular component Apm is calculated [10] on the basis of the following formula:

Aom= Ml + B/H8, 1!,
—1 (20)
B = 4y(1+y) Pri@—a)a! Aw( 1+ %) H,

The average pore size in the skeleton (the first-order structure) is defined as the mean integral thickness
of the state between the grains onthearea Tr(rzcyl - a2) (see Fig. 4) and is equal to 6; = (0.09 + h).

By examining the geometry of the elementary cell in a second-order structure, we can find the fune-
tion with which to calculate the average pore size in the second-order structure. From visual observations
of various granular materials we see that 2d < A, < bd (see Fig. 1b). For the calculations we will take
the average value A, = 3d, in which case

8y =2 (Ly— Ay = 6d (c;! ~1). (21)

To evaluate the radiation component in the first-order structure (the skeleton) we will use [1] the following
relationship:

Ay, = 262G, T, (22)

In calculating the radiation component in the second-order structure we will use the method proposed in
[19]. We will regard the entire granular system as a continuous isotropic medium with an integral absorp-
tion coefficient «, a thickness 7, and a skeleton emissivity of ¢4 ~ 1. In this case,

3 T Vo Y
M, =03 (g ) o (23

‘.

The parameter Y can be evaluated with provision for the attenuation of radiation flux by using the
graphical relationship Y = £(7, €,), given in [19]. For T > 10, which is characteristic of most granular ma-
terials whose porosity mp < 0.8, we can assume Y =~ 1.
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Comparison of the theoretical values for the effective thermal conductivity of granular systems over
a broad range of variation in the determining parameters (Ag, Ap, mp, T, H) with experiment confirms
the possibility of using the new model and the functional relationship (18) to predict the properties of gran-
ular systems. A detailed analysis of (18) and a detailed comparison of the calculation results with ex~
perimenta data will be published in subsequent reports.
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NOTATION

is the total volume concentration of the gas component in the pores of the gran-
ular system;

is the effective thermal conductivity;

is the thermal conductivity of the gas component in the pores;

is the thermal conductivity of the solid component;

is the thermal conductivity of the skeleton;

is the volume concentration of the gas component in the skeleton (first~order
structure);

is the volume concentration of the gas component in the second-order struc-
ture;

is half the thickness of the skeleton link in the second-order structure;

is the dimension of the elementary cell in the second-order structure;

is the radius of the spherical grains;

is the radius of the point of actual contact;

is the radius of the cylinder whose cross-sectional area is rrréph/S;

is the first-order Bessel function of the first kind and of imaginary argument;
is a first-order McDonald funection;

are, respectively, the absolute and relative heights of the microroughness;
is the radius of the nominal contact area;

is the area of the elementary cell, equal to the area of the hexagon described
about the grain;

is the height of the elementary cell;

are, respectively, the molecular and radiation components of the coefficient
of thermal conductivity in the pores;

is the thermal conductivity of the gas at atmospheric pressure, Hy = 760 mm
Hg;

is the average dimension of the i-th pore;

is the ratio of isobaric and isochoric heat capacities;

is the Prandtl number for the gas in the pores;

is the accommodation factor of the gas;

is the molecular mean free path of the gas at an infinitely high temperature;
is the Sutherland constant;

is the dimension of the spherical grains;

is the emissivity of the grain surface;

is the Stefan —Boltzmann constant;

is the integral coefficient of radiation absorption;

is the area of radiation absorption in the elementary cell of second-order
structure;

is the area of the elementary cell in the second-order structure;

is the optical thickness of the medium.
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